

AV Evasion: Shellcode

In this room, we will explore how to build and deliver payloads, focusing
on avoiding detection by AV engines.

2

Content

1 What is PE? .. 3

2 About shellcode ... 5

3 Shellcode ... 6

4 Generating shellcode ... 9

5 Staged payloads ... 12

6 Encoding and Encryption .. 19

7 Packers .. 24

8 Binders .. 28

3

1 What is PE?

Windows Executable file format, aka PE (Portable Executable), is a data structure that holds infor-

mation necessary for files. It is a way to organize executable file code on a disk. Windows operat-

ing system components, such as Windows and DOS loaders, can load it into memory and execute

it based on the parsed file information found in the PE.

In general, the default file structure of Windows binaries, such as EXE, DLL, and Object code files,

has the same PE structure and works in the Windows operating system for both (x86 and x64) CPU

architecture.

A PE structure contains various sections that hold information about the binary, such as metadata

and links to a memory address of external libraries. One of these sections is the PE Header, which

contains metadata information, pointers, and links to address sections in memory. Another sec-

tion is the Data section, which includes containers that include the information required for the

Windows loader to run a program, such as the executable code, resources, links to libraries, data

variables, etc.

4

We can control in which Data section to store our shellcode by how we define and initialize the
shellcode variable. The following are some examples that show how we can store the shellcode in
PE:

• Defining the shellcode as a local variable within the main function will store it in the .TEXT
PE section.

• Defining the shellcode as a global variable will store it in the .Data section.

• Another technique involves storing the shellcode as a raw binary in an icon image and link-
ing it within the code, so in this case, it shows up in the .rsrc Data section.

• We can add a custom data section to store the shellcode.

We can investigate these values by loading file to PE-bear tool:

5

2 About shellcode

To generate our own shellcode, we need to write and extract bytes from the assembler machine

code. For this task, we will be using the AttackBox to create a simple shellcode for Linux that

writes the string "THM, Rocks!". The following assembly code uses two main functions:

• System Write function (sys_write) to print out a string we choose.

• System Exit function (sys_exit) to terminate the execution of the program.

To call those functions, we will use syscalls. A syscall is the way in which a program requests the

kernel to do something. In this case, we will request the kernel to write a string to our screen, and

the exit the program. Each operating system has a different calling convention regarding syscalls,

meaning that to use the write in Linux, you'll probably use a different syscall than the one you'd

use on Windows. For 64-bits Linux, you can call the needed functions from the kernel by setting up

the following values:

The table above tells us what values we need to set in different processor registers to call the

sys_write and sys_exit functions using syscalls. For 64-bits Linux, the rax register is used to indicate

the function in the kernel we wish to call. Setting rax to 0x1 makes the kernel execute sys_write,

and setting rax to 0x3c will make the kernel execute sys_exit. Each of the two functions require

some parameters to work, which can be set through the rdi, rsi and rdx registers.

6

3 Shellcode

We have following code:

Our message string is stored at the end of the .text section. Since we need a pointer to that mes-

sage to print it, we will jump to the call instruction before the message itself. When call GOBACK is

executed, the address of the next instruction after call will be pushed into the stack, which corre-

sponds to where our message is. Note that the 0dh, 0ah at the end of the message is the binary

equivalent to a new line (\r\n).

Next, the program starts the GOBACK routine and prepares the required registers for our first

sys_write() function.

• We specify the sys_write function by storing 1 in the rax register.

• We set rdi to 1 to print out the string to the user's console (STDOUT).

• We pop a pointer to our string, which was pushed when we called GOBACK and store it into rsi.

• With the syscall instruction, we execute the sys_write function with the values we prepared.

7

• For the next part, we do the same to call the sys_exit function, so we set 0x3c into the rax register
and call the syscall function to exit the program.

Let’s compile it first:

Now that we have the compiled ASM program, let's extract the shellcode with the objdump com-

mand by dumping the .text section of the compiled binary:

8

Now we need to extract the hex value from the above output:

Finally, we have it, a formatted shellcode from our ASM assembly. That was fun!

To confirm that the extracted shellcode works as we expected, we can execute our shellcode and

inject it into a C program:

Aand it works!

Nice! it works. Note that we compile the C program by disabling the NX protection, which may

prevent us from executing the code correctly in the data segment or stack.

9

4 Generating shellcode

Now to the fun part! We will use Msfvenom on the AttackBox to generate a shellcode that exe-

cutes Windows files. We will be creating a shellcode that runs the calc.exe application.

let's continue using the generated shellcode and execute it on the operating system. The following

is a C code containing our generated shellcode which will be injected into memory and will exe-

cute "calc.exe".

10

This will be our code:

Let’s compile it as an exe file:

And transfer to windows machine via smb:

11

And when runnin calc-MSF it works!

However, this would be flagged by several Antivirus software.

12

5 Staged payloads

In our goal to bypass the AV, we will find two main approaches to delivering the final shellcode to

a victim. Depending on the method, you will find payloads are usually categorized as staged or

stageless payloads.

A stageless payload embeds the final shellcode directly into itself. Think of it as a packaged app

that executes the shellcode in a single-step process. In previous tasks, we embedded an executa-

ble that embedded a simple calc shellcode, making a stageless payload.

Staged payloads work by using intermediary shellcodes that act as steps leading to the execution

of a final shellcode. Each of these intermediary shellcodes is known as a stager, and its primary

goal is to provide a means to retrieve the final shellcode and execute it eventually.

While there might be payloads with several stages, the usual case involves having a two-stage pay-

load where the first stage, which we'll call stage0, is a stub shellcode that will connect back to the

attacker's machine to download the final shellcode to be executed.

13

Once retrieved, the stage0 stub will inject the final shellcode somewhere in the memory of the

payload's process and execute it (as shown below).

14

When deciding which type of payload to use, we must be aware of the environment we'll be at-

tacking. Each payload type has advantages and disadvantages depending on the specific attack

scenario.

In the case of stageless payloads, you will find the following advantages:

• The resulting executable packs all that is needed to get our shellcode working.

• The payload will execute without requiring additional network connections. The fewer the network

interactions, the lesser your chances of being detected by an IPS.

• If you are attacking a host with very restricted network connectivity, you may want your whole pay-

load to be in a single package.

For staged payloads, you will have:

• Small footprint on disk. Since stage0 is only in charge of downloading the final shellcode, it will

most likely be small in size.

• The final shellcode isn't embedded into the executable. If your payload is captured, the Blue Team

will only have access to the stage0 stub and nothing more.

• The final shellcode is loaded in memory and never touches the disk. This makes it less prone to be

detected by AV solutions.

• You can reuse the same stage0 dropper for many shellcodes, as you can simply replace the final

shellcode that gets served to the victim machine.

In conclusion, we can't say that either type is better than the other unless we add some context to

it. In general, stageless payloads are better suited for networks with lots of perimeter security, as

it doesn't rely on having to download the final shellcode from the Internet. If, for example, you are

performing a USB Drop Attack to target computers in a closed network environment where you

know you won't get a connection back to your machine, stageless is the way to go.

Staged payloads, on the other hand, are great when you want your footprint on the local machine

to be reduced to a minimum. Since they execute the final payload in memory, some AV solutions

might find it harder to detect them. They are also great for avoiding exposing your shellcodes

(which usually take considerable time to prepare), as the shellcode isn't dropped into the victim's

disk at any point (as an artifact).

15

To create a staged payload, we will use a slightly modified version of the stager code provided by

@mvelazc0.

This is the full code:

16

The first part of the code will import some Windows API functions via P/Invoke. The functions we

need are the following three from kernel32.dll:

WinAPI Function

VirtualAlloc() Allows us to reserve some memory to be used by our shellcode.

CreateThread() Creates a thread as part of the current process.

WaitForSingleObject() Used for thread synchronization.

First, the shellcode is downloaded and stored in the 'shellcode' variable. The 'VirtualAlloc()' func-

tion is then used to request a block of executable memory from the operating system. The size of

the memory block requested is equal to the length of the shellcode and the

'PAGE_EXECUTE_READWRITE' flag is set, making the memory block executable, readable, and writ-

able. The 'Marshal.Copy()' function is then used to copy the shellcode into the memory block,

which is referenced by the 'codeAddr' variable.

Next, the 'CreateThread()' function is used to create a new thread that executes the shellcode

stored in the 'codeAddr' variable. The thread starts immediately due to the fifth parameter being

set to 0.

Finally, the 'WaitForSingleObject()' function is called to ensure the main program waits for the

shellcode thread to finish execution before continuing. This is to prevent the main program from

closing prematurely before the shellcode has fully executed.

We compile the payload:

17

and then generate shellcode:

After setting up a simple https server with these commands:

We can now execute our stager payload. The stager should connect to the HTTPS server and re-

trieve the shellcode.bin file to load it into memory and run it on the victim machine. Remember to

set up an nc listener to receive the reverse shell on the same port specified when running

msfvenom

We execute the payload:

18

Aand get connection back!

This also bypassed the detection of AV:

19

6 Encoding and Encryption

Let’s create our own custom encoding schemes so that the AV doesn't know what to do to analyze

our payload. Notice you don't have to do anything too complex, as long as it is confusing enough

for the AV to analyze. For this task, we will take a simple reverse shell generated by msfvenom and

use a combination of XOR and Base64 to bypass Defender.

Let's start by generating a reverse shell with msfvenom in CSharp format:

Before building our actual payload, we will create a program that will take the shellcode generated

by msfvenom and encode it in any way we like. In this case, we will be XORing the payload with a

custom key first and then encoding it using base64. Here's the complete code for the encoder:

20

The code is pretty straightforward and will generate an encoded payload that we will embed on

the final payload. We need to replace the buf variable with the shellcode generated previously.

21

Also, need to compile:

And now we get our encoded payload

this can be inserted into EncStageless.cs:

22

Aand we got connection!

23

24

7 Packers

Let's say you built a reverse shell executable, but the AV is catching it as malicious because it

matches a known signature. In this case, using a packer will transform the reverse shell executable

so that it doesn't match any known signatures while on disk. As a result, you should be able to dis-

tribute your payload to any machine's disk without much problem.

AV solutions, however, could still catch your packed application for a couple of reasons:

• While your original code might be transformed into something unrecognizable, remember that the
packed executable contains a stub with the unpacker's code. If the unpacker has a known signa-
ture, AV solutions might still flag any packed executable based on the unpacker stub alone.

• At some point, your application will unpack the original code into memory so that it can be exe-
cuted. If the AV solution you are trying to bypass can do in-memory scans, you might still be de-
tected after your code is unpacked.

We have following payload code to work with. It takes a shellcode generated by msfvenom and

runs it into a separate thread. For this to work, you'll need to generate a new shellcode and put it

into the shellcode variable of the code:

25

here is the shellcode we add:

We will compile it and upload to AV check.

However, it still gets detected.

26

We will use the ConfuserEx packer for this task, as our payloads are programmed on .NET.

First, need to select payload and enable compressor. Finally, the new payload should be ready and

won’t trigger alarms when uploaded to AV Checker. Let’s test it! Also, if it goes under the radar,

we should get connection back:

27

No detections!

Nice! Also got connection back! Getting the flag before it is too late:

We need to remember AVs doing in-memory scanning. If many commands are run on your re-

verse shell, the AV will notice your shell and kill it. This is because Windows Defender will hook

certain Windows API calls and do in-memory scanning whenever such API calls are used. In the

case of any shell generated with msfvenom, CreateProcess() will be invoked and detected.

There are a couple of simple things you can do to avoid detection:

• Just wait a bit. Try spawning the reverse shell again and wait for around 5 minutes before sending
any command. You'll see the AV won't complain anymore. The reason for this is that scanning
memory is an expensive operation. Therefore, the AV will do it for a while after your process starts
but will eventually stop.

• Use smaller payloads. The smaller the payload, the less likely it is to be detected

28

8 Binders

You can easily plant a payload of your preference in any .exe file with msfvenom. The binary will

still work as usual but execute an additional payload silently. The method used by msfvenom in-

jects your malicious program by creating an extra thread for it, so it is slightly different from what

was mentioned before but achieves the same result. Having a separate thread is even better since

your program won't get blocked in case your shellcode fails for some reason.

For this task, we will be backdooring the WinSCP.

The binary will still work as usual but execute an additional payload silently. The method used by

msfvenom injects your malicious program by creating an extra thread for it, so it is slightly differ-

ent from what was mentioned before but achieves the same result. Having a separate thread is

even better since your program won't get blocked in case your shellcode fails for some reason.

29

When executing the malicious .exe, WinSCP will work:

But we also get connection to our listener! Nice!

30

However, binders won't do much to hide your payload from an AV solution. The simple fact of

joining two executables without any changes means that the resulting executable will still trigger

any signature that the original payload did.

The main use of binders is to fool users into believing they are executing a legitimate executable

rather than a malicious payload.

When creating a real payload, you may want to use encoders, crypters, or packers to hide your

shellcode from signature-based AVs and then bind it into a known executable so that the user

doesn't know what is being executed.

