
Buffer Overflow Prep

This is part of Tryhackme – Offensive Pentesting Learning Path

First logging onto the machine using RDP with the following given credentials: admin/password

Mona Configuration

The mona script has been preinstalled, however to make it easier to work with, you should

configure a working folder using the following command, which you can run in the command input

box at the bottom of the Immunity Debugger window:

!mona config -set workingfolder c:\mona\%p

Creating a file on your Kali box called fuzzer.py with the following contents:

The fuzzer will send increasingly long strings comprised of As. If the fuzzer crashes the server with

one of the strings, the fuzzer should exit with an error message. Make a note of the largest number

of bytes that were sent.

It did crash the server at 2000 bytes. Now, we will run the following command to generate a cyclic

pattern of a length 400 bytes longer that our string that crashed the server (change the -l value to

2400):

we copy the output pattern and place it into the payload variable of our exploit.py script

The script crashes the oscp.exe server and we see that it throws out an error implying “Access

violation”.

in the command input box of Immunity Debugger at the bottom of the screen, we will run the

following mona command, we will change the distance to the same length as the pattern we created

before

!mona findmsp -distance 2400

Mona should display a log window with the output of the command

One line we want to focus:

EIP contains normal pattern : ... (offset 1978)

Update your exploit.py script and set the offset variable to this value (was previously set to 0). Set

the payload variable to an empty string again. Set the retn variable to "BBBB".

Restart oscp.exe in Immunity and run the modified exploit.py

script again. The EIP register should now be overwritten with

the 4 B's (e.g. 42424242).

We will generate a byte-array using mona, and we will exclude the null byte (\x00) by default.

!mona bytearray -b "\x00"

!mona config -set workingfolder c:\mona\%p !mona bytearray -b "\x00"

Now we will generate a string of bad characters that is same as the byte-array. We will use the

following python script in order to generate a string of bad chars from \x01 to \xff:

update our exploit.py script again and set the payload variable to the string of bad characters the

script generated

After crashing the server again, we will make a note of the address to which the ESP register points,

and then we will use it in the following mona command

Mona to find possible bad characters with a comparison between the byte array and ESP

eliminated all bad characters, we will remove all of them from our bad

characters pattern

x07,x08,x2e,x2f,xa0,xa1

After that let’s repeat the process.

!mona bytearray -b “\x00\x07\x08\x2e\x2f\xa0\xa1”

!mona compare -f C:\mona\oscp\bytearray.bin -a 0180FA30

And get a clean bad characters pattern since it is unmodified now.

Finding a Jump Point

Regardless of the oscp.exe in Immunity Debugger running or in a crashed state, we will run the

following mona command in order to make sure to update the -cpb option with all the bad

characters we identified including null-byte:

!mona jmp -r esp -cpb "\x00\x07\x08\x2e\x2f\xa0\xa1"

This command will find all jmp esp (or equivalent) instructions with addresses that do not include

any of specified bad characters.

We will choose an address and update our exploit.py script, and we will set the retn variable to the address
backwards

Generating payload with info we gathered

copy the generated C code string, and integrate it into our exploit.py script in

payload variable between parentheses.

As an encoder is likely used to generate the payload, we will need some space in memory for the

payload to unpack itself. We will do it through specifying the padding variable to a string of 16 or

more to No Operation (\x90) bytes:

After that Final payload looks like this

Let’s set up listener and run the exploit.py script!

